Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 366(6461): 128-132, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31604315

RESUMO

Plasmalogens are glycerophospholipids with a hallmark sn-1 vinyl ether bond. These lipids are found in animals and some bacteria and have proposed membrane organization, signaling, and antioxidant roles. We discovered the plasmanylethanolamine desaturase activity that is essential for vinyl ether bond formation in a bacterial enzyme, CarF, which is a homolog of the human enzyme TMEM189. CarF mediates light-induced carotenogenesis in Myxococcus xanthus, and plasmalogens participate in sensing photooxidative stress through singlet oxygen. TMEM189 and other animal homologs could functionally replace CarF in M. xanthus, and knockout of TMEM189 in a human cell line eliminated plasmalogens. Discovery of the human plasmanylethanolamine desaturase will spur further study of plasmalogen biogenesis, functions, and roles in disease.


Assuntos
Myxococcus xanthus/enzimologia , Oxirredutases/metabolismo , Plasmalogênios/biossíntese , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Linhagem Celular , Humanos , Luz , Oxirredutases/química , Oxirredutases/genética , Plantas/enzimologia , Plasmalogênios/metabolismo , Transdução de Sinais , Oxigênio Singlete/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Compostos de Vinila/química
2.
Sci Rep ; 7: 43240, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28233804

RESUMO

CdnL is an essential RNA polymerase (RNAP)-binding activator of rRNA transcription in mycobacteria and myxobacteria but reportedly not in Bacillus. Whether its function and mode of action are conserved in other bacteria thus remains unclear. Because virtually all alphaproteobacteria have a CdnL homolog and none of these have been characterized, we studied the homolog (CdnLCc) of the model alphaproteobacterium Caulobacter crescentus. We show that CdnLCc is not essential for viability but that its absence or depletion causes slow growth and cell filamentation. CdnLCc is degraded in vivo in a manner dependent on its C-terminus, yet excess CdnLCc resulting from its stabilization did not adversely affect growth. We find that CdnLCc interacts with itself and with the RNAP ß subunit, and localizes to at least one rRNA promoter in vivo, whose activity diminishes upon depletion of CdnLCc. Interestingly, cells expressing CdnLCc mutants unable to interact with the RNAP were cold-sensitive, suggesting that CdnLCc interaction with RNAP is especially required at lower than standard growth temperatures in C. crescentus. Our study indicates that despite limited sequence similarities and regulatory differences compared to its myco/myxobacterial homologs, CdnLCc may share similar biological functions, since it affects rRNA synthesis, probably by stabilizing open promoter-RNAP complexes.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Domínios e Motivos de Interação entre Proteínas
3.
PLoS One ; 10(3): e0121322, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811865

RESUMO

Two prototypes of the large CarD_CdnL_TRCF family of bacterial RNA polymerase (RNAP)-binding proteins, Myxococcus xanthus CarD and CdnL, have distinct functions whose molecular basis remain elusive. CarD, a global regulator linked to the action of several extracytoplasmic function (ECF) σ-factors, binds to the RNAP ß subunit (RNAP-ß) and to protein CarG via an N-terminal domain, CarDNt, and to DNA via an intrinsically unfolded C-terminal domain resembling eukaryotic high-mobility-group A (HMGA) proteins. CdnL, a CarDNt-like protein that is essential for cell viability, is implicated in σA-dependent rRNA promoter activation and interacts with RNAP-ß but not with CarG. While the HMGA-like domain of CarD by itself is inactive, we find that CarDNt has low but observable ability to activate ECF σ-dependent promoters in vivo, indicating that the C-terminal DNA-binding domain is required to maximize activity. Our structure-function dissection of CarDNt reveals an N-terminal, five-stranded ß -sheet Tudor-like domain, CarD1-72, whose structure and contacts with RNAP-ß mimic those of CdnL. Intriguingly, and in marked contrast to CdnL, CarD mutations that disrupt its interaction with RNAP-ß did not annul activity. Our data suggest that the CarDNt C-terminal segment, CarD61-179, may be structurally distinct from its CdnL counterpart, and that it houses at least two distinct and crucial function determinants: (a) CarG-binding, which is specific to CarD; and (b) a basic residue stretch, which is also conserved and functionally required in CdnL. This study highlights the evolution of shared and divergent interactions in similar protein modules that enable the distinct activities of two related members of a functionally important and widespread bacterial protein family.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Myxococcus xanthus/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Transporte/metabolismo , Teste de Complementação Genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Myxococcus xanthus/genética , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Relação Estrutura-Atividade
4.
PLoS One ; 9(10): e108946, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25272012

RESUMO

CdnL and CarD are two functionally distinct members of the CarD_CdnL_TRCF family of bacterial RNA polymerase (RNAP)-interacting proteins, which co-exist in Myxococcus xanthus. While CarD, found exclusively in myxobacteria, has been implicated in the activity of various extracytoplasmic function (ECF) σ-factors, the function and mode of action of the essential CdnL, whose homologs are widespread among bacteria, remain to be elucidated in M. xanthus. Here, we report the NMR solution structure of CdnL and present a structure-based mutational analysis of its function. An N-terminal five-stranded ß-sheet Tudor-like module in the two-domain CdnL mediates binding to RNAP-ß, and mutations that disrupt this interaction impair cell growth. The compact CdnL C-terminal domain consists of five α-helices folded as in some tetratricopeptide repeat-like protein-protein interaction domains, and contains a patch of solvent-exposed nonpolar and basic residues, among which a set of basic residues is shown to be crucial for CdnL function. We show that CdnL, but not its loss-of-function mutants, stabilizes formation of transcriptionally competent, open complexes by the primary σA-RNAP holoenzyme at an rRNA promoter in vitro. Consistent with this, CdnL is present at rRNA promoters in vivo. Implication of CdnL in RNAP-σA activity and of CarD in ECF-σ function in M. xanthus exemplifies how two related members within a widespread bacterial protein family have evolved to enable distinct σ-dependent promoter activity.


Assuntos
Proteínas de Bactérias/fisiologia , RNA Polimerases Dirigidas por DNA/metabolismo , Myxococcus xanthus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutação , Myxococcus xanthus/metabolismo , Homologia de Sequência de Aminoácidos
5.
J Bacteriol ; 194(21): 5875-85, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22923595

RESUMO

Conditional expression of a gene is a powerful tool to study its function and is typically achieved by placing the gene under the control of an inducible promoter. There is, however, a dearth of such inducible systems in Myxococcus xanthus, a well-studied prokaryotic model for multicellular development, cell differentiation, motility, and light response and a promising source of secondary metabolites. The few available systems have limitations, and exogenously based ones are unavailable. Here, we describe two new, versatile inducible systems for conditional expression of genes in M. xanthus. One employs isopropyl-ß-d-thiogalactopyranoside (IPTG) as an inducer and is inspired by those successfully applied in some other bacteria. The other requires vanillate as an inducer and is based on the system developed originally for Caulobacter crescentus and recently adapted for mammalian cells. Both systems are robust, with essentially no expression in the absence of an inducer. Depending on the inducer and the amounts added, expression levels can be modulated such that either system can conditionally express genes, including ones that are essential and are required at high levels such as ftsZ. The two systems operate during vegetative growth as well as during M. xanthus development. Moreover, they can be used to simultaneously induce expression of distinct genes within the same cell. The conditional expression systems we describe substantially expand the genetic tool kit available for studying M. xanthus gene function and cellular biology.


Assuntos
Expressão Gênica , Genética Microbiana/métodos , Biologia Molecular/métodos , Myxococcus xanthus/genética , Isopropiltiogalactosídeo/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ácido Vanílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...